Analycité de l'espace

Br-Rachid www.sc-math.e-monsite.com

Sujet 1:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soit les points A(1,-2,1) et B(-1,0,5) et C(2,3,4) et D(5,0,-2)

- 1. Former les cordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}
- 2. Existe-t-il un nombre réel k tel que : $\overrightarrow{AB} = k \overrightarrow{CD}$?
- 3. Les droites (AB) et (CD) sont-elles parallèles ?
- 4. Déterminer les cordonnées du point E pour que ABCE soit un parallélogramme
- 5. Déterminer les cordonnées de G le barycentre des points (A,1) et (B,1) et (C,1) et (E,1)

Sujet 2:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$ Soit les points A(4,0,0) et B(0,5,0) et C(0,0,3)

- 1. Représenter le quadrilatère OABC dans le repère (O, i, j, \vec{k})
- 2. Déterminer les cordonnées des points I et J et K et L puis les représenter ; avec :

$$\overrightarrow{AI} = \frac{2}{5}\overrightarrow{AC}$$
 et $5\overrightarrow{OJ} - 4\overrightarrow{OB} = 0$ et $4\overrightarrow{AB} = 7\overrightarrow{AK}$ et $\overrightarrow{OC} = \frac{3}{2}\overrightarrow{OL}$

- 3. Montrer que les droites (IJ) et (KL) sont sécantes
- 4. Vérifier que l'intersection de (IJ) et de (KL) est le point milieu du segment [IJ]

Sujet 3:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soit le vecteur $\vec{u}(1, -1, 2)$.

- 1. Former un vecteur \vec{v} qui ne soit pas colinéaire avec \vec{u}
- 2. Former un vecteur \vec{w} qui ne soit pas colinéaire ni avec \vec{u} ni avec \vec{v}
- 3. \vec{u} et \vec{v} et \vec{w} sont-ils toujours coplanaires ?

Sujet 4:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient $\vec{a}(0,1,1)$ et $\vec{b}(1,1,0)$ et $\vec{c}(1,0,1)$

- 1. Soient α et β des nombres réels tels que : $\alpha \vec{a} + \beta \vec{b} = \vec{0}$. Montrer que α et β sont tous deux nuls et déduire que \vec{a} et \vec{b} ne sont pas colinéaires
- 2. Soient α et β et γ des nombres réels tels que : $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$. Montrer que α et β et γ sont tous les trois nuls et déduire que \vec{a} et \vec{b} et \vec{c} ne sont pas coplanaires

Analycité de l'espace

Br-Rachid www.sc-math.e-monsite.com

Sujet 5:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

Soient $\vec{a}(0,1,1)$ et $\vec{b}(1,1,0)$ et $\vec{c}(1,0,1)$ et $\vec{u}(1,-1,1)$

- 1. Vérifier que les vecteurs \vec{a} et \vec{b} et \vec{c} ne sont pas coplanaires
- 2. Déterminer des nombres réels x et y et z tels que : $x\vec{a}+y\vec{b}+z\vec{c}=\vec{u}$

Sujet 6:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$

Soient A(1,1,1) et B(1,1,2) et C(1,0,1) et D(x,y,3)

- 1- Représenter soigneusement les points A et B et C dans le repère (O, i, j, k)
- 2- Déterminer les coordonnées de D pour que O et A et D soient alignés
- 3- Montrer que A et B et C forment un plan
- 4- Donner une représentation paramétrique du plan (ABC)
- 5- Déduire une équation cartésienne de (P)

Sujet 7:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient A(1,1,1) et $\vec{u}(1,1,2)$

- 1. Former une représentation paramétrique de la droite (D) passant par A et dirigée par \vec{u}
- 2. Déduire deux équations cartésiennes de (D)
- 3. **Soit le plan** (P): x+y+z-1=0
 - a) Montrer que (D) et (P) ne sont pas parallèles
 - b) Déterminer le point d'intersection de (D) et (P)

Sujet 8:

L'espace est rapporté à un repère orthonormé $(O, \hat{i}, \hat{j}, \hat{k})$

Soient
$$A(1,1,1)$$
 et $B(\frac{1}{2},1,0)$ et $\vec{u}(1,1,0)$ et $\vec{v}(-2,2,0)$

- 1- Donner des représentations paramétriques des droites (D) passant par A et dirigée par \vec{u} et de (L) passant par B et dirigée par \vec{v}
- 2- Montrer que (D) et (L) ne sont pas parallèles
- 3- Montrer que (D) et (L) ne sont pas coplanaires
- 4- Former une représentation paramétrique d'un plan (P) dirigé par \vec{u} et \vec{v} et ne contenant ni (D) ni (L)

Analycité de l'espace

Br-Rachid www.sc-math.e-monsite.com

Sujet 9:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$

1- Donner une représentation paramétrique du plan (P) dont une équation cartésienne est :

$$x+y+z+1=0$$

2- Donner une représentation paramétrique de la droite (D) dont deux équations cartésiennes

sont:
$$\begin{cases} x + y + z + 1 = 0 \\ x - z = 0 \end{cases}$$

3- Déterminer l'intersection de (D) et (P)

Sujet 10:

L'espace est rapporté à un repère orthonormé $(O, \hat{i}, \hat{j}, \hat{k})$

- 1. Montrer la proposition suivante : Si ax+by=0. $\forall a,b \in IR$ alors x=y=0
- 2. Soient a et b deux nombres réels non tout deux nuls. Soit le plan $(P_{(a,b)})$ d'équation cartésienne :

$$a(x+y-1)+b(x+y+z-1)=0$$

- 3. a) Montrer que $(P_{(1,0)})$ et $(P_{(0,1)})$ ne sont pas parallèles
- 4. **b) Déterminer** $(P_{(1,0)}) \cap (P_{(0,1)})$
- 5. Montrer que tous les plans $(P_{(a,b)})$ passent par une droite fixe à déterminer

Sujet 11:

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soit le point M(x, y, z). On pose $OM = \rho$ Soit H le projeté orthogonal de M sur le plan $P_{(O, \vec{i}, \vec{j})}$.

On pose: r = OH et $(i, OH) = \theta[2\pi]$ et $(OM, k) = \varphi[2\pi]$ et h = z

Partie 1: Coordonnées cartésiennes

- 1. Représenter soigneusement dans le repère $(O, \vec{i}, \vec{j}, \vec{k})$ le segment [AB] avec A(1,1,2) et B(2,1,3)
- 2. Quelles sont les coordonnées cartésienne du projeté orthogonal A de A sur le plan (YOZ)?
- 3. Quelles sont les coordonnées cartésiennes du projeté orthogonal B de B sur la droite (OX)?

Analycité de l'espace

Br-Rachid www.sc-math.e-monsite.com

Partie 2: Coordonnées cylindriques

- 1. Montrer que $r = OH = \sqrt{x^2 + y^2}$ et que $\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$ avec θ la mesure de l'angle orienté (i, OH) (r, θ, h) s'appelle le triplet des coordonnées cylindrique de M. Ce système est une extension à l'espace du système des coordonnées polaires dans le plan. Lorsque θ varit de 0 à , Le segment [MH] décrit le cylindre de base le cercle $C_{(O,r)}$ et de hauteur |h|
- 2. Donner les coordonnées cylindriques du points de coordonnées cartésiennes $B(\sqrt{3},1-2)$
- 3. Déterminer les coordonnées cartésiennes du point de coordonnées cylindrique $C(2, \frac{-\pi}{6}, 1)$

Partie 3: Coordonnées sphériques

- 1. Montrer que : $\begin{cases} x = \rho \cos{(\theta)} \cos{(\varphi)} \\ y = \rho \sin{(\theta)} \cos{(\varphi)}. \text{ avec } \varphi \text{ la mesure de l'angle orienté } \widehat{OM}, \widehat{k} \end{cases}$ $(\rho, \theta, \varphi) \text{ s'appelle le triplet des coordonnées sphériques de } M. \text{ Lorsque } \theta \text{ varie de } 0 \text{ à } 2\pi \text{ et } \varphi$ varie de 0 à π , Le Point M décrit la sphère de centre O et de rayon ρ
- 2. **Montrer que** : $x^2 + y^2 + z^2 = \rho^2$
- 3. Déterminer les coordonnées sphériques du point E de coordonnées cartésiennes $E[1,1,\sqrt{6}]$
- 4. Déterminer les coordonnées cartésiennes du point F de coordonnées sphériques $E\left(3,0,\frac{\pi}{6}\right)$

Sujet 12:

Soient $m \in IR$ et (P_m) le plan d'équation cartésienne : (m-1)x+(m+2)y+mz-2=0

- 1. Vérifier que $O(0,0,0) \notin (P_m)$; $\forall m \in IR$
- 2. Donner une représentation paramétrique de (P_0) et de (P_1)
- 3. Montrer que tous les plans (P_m) passent par une droite fixe (Δ) à déterminer
- 4. Déterminer A et B les points d'intersection respectifs de (P_m) avec les axes de cordonnées
- 5. Montrer que la droite (AB) passe par un point fixe à déterminer

Sujet 13:

Soit l'ensemble des points M(x, y, z) de l'espace tels que : $x^2 + y^2 + z^2 = 1$

- 1. Montrer que x ou y ou z est non nul puis montrer que : $|x| \le 1$ et $|y| \le 1$ et $|z| \le 1$
- 2. Vérifier que : $\exists \varphi \in IR$. $\cos^2(\varphi) = x^2 + y^2$ et $\sin(\varphi) = z$
- 3. Vérifier que : $\exists \theta \in IR$. $\cos(\varphi)\cos(\theta) = x$ et $\cos(\varphi)\sin(\theta) = y$ et $\sin(\varphi) = z$