TD DE MATHÉMATIQUES — 2SM-CYCLE SECONDAIRE QUALIFIANT

ARRET - BILAN

Br-Rachid http://www.sc-math.e-monsite.com

Sujet:

<u>Partie 1</u>: On définie sur l'intervalle $I=[0,+\infty[$ la fonction f par : $e^{-x}f(x)=e^{x}-2$

- 1. Résoudre l'équation f(x)=0 dans I
- 2. a) Calculer la dérivée de f sur I et montrer que $\forall x \ge \ln(2)$. $f'(x) \ge 2$
 - b) Calculer J = f(I)
- 3. a) Montrer que f est bijective de I vers J. Donner l'expression de $f^{-1}(x)$
 - b) Montrer que l'équation $x-f^{-1}(x)=0$ admet une solution unique $\lambda \in]0,1[$
 - c) Montrer que : $\forall x \ge 0$. $0 \le (f^{-1})'(x) \le \frac{1}{2}$
- 4. Calculer la dérivée seconde de f et étudier la concavité de sa courbe représentative
- 5. Montrer que f est solution d'une équation différentielle d'ordre 2 et à coefficients réels dont on précisera des conditions initiales

<u>Partie 2</u>: On définie la suite (u_n) par : $u_0=0$ et $u_{n+1}=f^{-1}(u_n)$ pour tout $n\in\mathbb{N}$

- 1. Montrer que (u_n) est positive
- 2. Montrer que (u_n) est convergente et de limite λ

Partie 3:

- 1. **a) Montrer que:** $\forall x > 0$. $0 < \frac{f(x) + 1}{x} < f'(x)$
 - b) Déduire les variations de la fonction $g(x) = \frac{f(x)}{x}$ sur $]0, +\infty[$
- 2. Soit $F(x) = \int_{x}^{2x} \frac{f(t)}{t} dt$ pour tout x > 0 et $F(0) = -\ln 2$
 - a) Montrer, en utilisant 1,a) que : $\forall x > 0$. $0 \le F(x) + \ln 2 \le f(2x) f(x)$
 - b) Montrer que F est continue et est dérivable en 0 à droite
- 3. a) Montrer que: $\forall x > 0$. $F(x) \ge f(x) \int_{x}^{2x} \frac{1}{t} dt$
 - b) Déduire la branche infinie de la courbe de F
- 4. a) Montrer que F est dérivable sur $]0,+\infty[$ et que sa dérivée est $F'(x)=\frac{f(2x)-f(x)}{x}$
 - b) Représenter graphiquement la courbe de F dans un repère orthonormé

Sujet:

On lance un dès équilibré, cubique à six faces numérotées de 1 à 6 deux fois de suites. Le résultat de chaque lancé est noté (x,y). On note d le PGDC de x et y: $d=x \wedge y$

Soient $A: \langle x \equiv 0[2] \rangle$ et $B: \langle y \equiv 0[2] \rangle$ et $C: \langle xy \equiv 0[2] \rangle$ et $D: \langle xy \equiv 0[3] \rangle$

- 1. a) Calculer P(A) et p(B) et $p(A \cap B)$
 - b) Déduire P(C)
- 2. Calculer P(D) et $p_A(D)$
- 3. Déterminer la loi de probabilité de d et calculer son espérance mathématique
- 4. Calculer $p(x \lor y = xy)$
- 5. Si on lance le dès trois fois de suite, calculer $p(x \land y \land z=2)$ ((x,y,z) = Résultat du lancé)