TD DE MATHÉMATIQUES — 2SM-CYCLE SECONDAIRE QUALIFIANT

ARRET - BILAN

Br-Rachid http://www.sc-math.e-monsite.com

Sujet:

Le plan complexe est rapporté à un repère orthonormé directe (O, \vec{u}, \vec{v})

- 1. **Résoudre dans C l'équation :** (E): $4z^2-7-i=10iz$
- 2. On note a et b les solutions de (E) avec $R_e(a)<0$. A et B sont les points d'affixes respectifs a et b
 - a) Vérifier que $\frac{b}{a} = 1 i$
 - b) En déduire que le triangle AOB est rectangle et isocèle en A
- Soit C un point du plan complexe différent de A et d'affixe cSoit D l'image de B par la rotation de centre C et d'angle $\frac{\pi}{2}$

Soit L l'image de D par la translation de vecteur \overline{AO}

- a) Déterminer en fonction de c l'affixe d du point D
- b) Déterminer en fonction de c l'affixe l du point L
- c) Déterminer la forme algébrique du nombre complexe
- d) En déduire la nature du triangle ACL

Sujet:

Le plan complexe est rapporté à un repère orthonormé directe (O, \vec{u}, \vec{v})

On considère dans C l'équation : (E): $z^2-4(1+\frac{2}{3}i)z+\frac{5}{3}+4i=0$

On donne $z_1=1+\frac{2}{3}i$ une solution de (E) et pose z_2 l'autre solution de (E)

- 1. a) Calculer z_1+z_2 et déduire que $z_2=3+2i$
 - b) En déduire que $z_2 = 3z_1$
- 2. a) Donner sous forme de arctan θ l'argument principal de z_1
 - b) Montrer que z_1 et z_2 ont le même argument principal
 - c) Déduire la forme trigonométrique du nombre complexe $\frac{5}{2}$ + 4 i

Sujet:

 ω

A et B et Ω sont trois points du plan complexe d'affixes respectifs a et b et Soit r la rotation de centre Ω et d'angle

Soient P d'affixe p et Q d'affixe q avec P=r(A) et B=r(Q)

- 1. a) Montrer que $p-\omega=e^{i\frac{\pi}{3}}(a-\omega)$ et $b-\omega=e^{i\frac{\pi}{3}}(q-\omega)$ b) Montrer que $\frac{1-e^{i\frac{\pi}{3}}}{1-e^{-i\frac{\pi}{3}}}=e^{i\frac{4\pi}{3}}$

 - c) Montrer que $\frac{p-a}{q-b} = \frac{\omega a}{\omega b} e^{i\frac{4\pi}{3}}$
- 2. On suppose $\frac{\omega a}{\omega h} = e^{i\frac{2\pi}{3}}$
 - a) Montrer que APQB est un parallélogramme
 - **b)** Montrer que $Arg(\frac{b-a}{p-a}) \equiv \frac{\pi}{2} [2\pi]$
 - c) En déduire que APQB est un rectangle