Chapitre: Continuité

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 1:

On consider la fonction f définie par : $\begin{cases} f(x) = \frac{x^2 - x + 1}{3x^2 + 6} ; & x \ge 1 \\ f(x) = \frac{1}{x^2 - x} \sin\left(\frac{\pi}{2}x\right) ; & x < 1et \ x \ne 0 \end{cases}$

- 1. Déterminer le domaine de définition de f et calculer f(1) et f(-1)
- 2. Montrer que f est continue en -1
- 3. Montrer que f est continue en 1 à droite
- 4. Etudier la continuité de f en 1 à gauche. f est-elle continue en 1 ?
- 5. Montrer que f admet, en 0, un prolongement par continuité à déterminer

Sujet 2:

On considere la fonction f définie sur IR^* par : $\begin{cases} f(x) = \frac{(2x-3)^3 + \lambda}{x^2 - 1} ; & x > 1 \\ f(x) = \frac{\mu x + \sin\left(\frac{\pi}{2}x\right)}{x^2 + 1} ; & x \le 1 \end{cases}$

- 1- Calculer suivant les valeurs de λ les limites de f en 1 à droite.
- 2- Calculer λ et μ pour que f soit continue en 1

Sujet 3:

Soit la suite de fonctions u_n définie sur IR - [0] par : $u_n(x) = \frac{(1+x)^n - 1}{x}$ $(n \in \mathbb{N})$

- 1. Calculer $\lim_{x\to 0} u_2(x)$
- 2. Montrer que la fonction u_n admet en 0 un prolongement par continuité $\overline{u_n}$ à déterminer
- 3. Calculer, suivant les valeurs de x, la limite de la suite $(u_n(x))$
 - Soit la fonction f_n définie sur IR [0] par : $f_n(x) = \frac{1}{x^2} [(1+x)^n 1 nx] \quad (n \in \mathbb{N}^* [1])$
 - 1- Calculer $\lim_{x \to 0} f_2(x)$
 - 2- Montrer que f_n admet en 0 un prolongement par continuité à déterminer

Sujet 4:

Soit: $f_n(x) = E(x) + (x - E(x))^n \quad (n \in \mathbb{N}^*)$

- 1. Calculer $f_n(0,04)$ puis calculer $f_n(p)$ avec p entier relatif
- 2. Montrer que la fonction f_n est continue sur \mathbb{Z} pour tout $n \in \mathbb{N}^*$
- 3. Montrer que la fonction f_n est continue sur IR pour tout $n \in \mathbb{N}^*$
- 4. Calculer en fonction de x la limite de la suite $(f_n(x))_{n \in \mathbb{N}^*}$

Chapitre: Continuité

Rr-Rachid http://www.sc-math.e-monsite.com

Sujet 5:

Soit:
$$f_n(x) = \frac{(1-sn(x))(1-\sin^2(x)).....(1-\sin^n(x))}{\cos^{2n}(x)}$$
 pour tout $n \in \mathbb{N}^*$ et $x \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[$

- 1. Calculer $\lim_{x \to \frac{\pi}{2}} f_1(x)$ et $\lim_{x \to \frac{\pi}{2}} f_2(x)$ 2. Calculer en fonction de n la limite $\lim_{x \to \frac{\pi}{2}} f_n(x)$
- 3. Montrer que la fonction f_n admet en 0 un prolongement par continuité $\overline{f_n}$ à déterminer
- 4. Calculer la limite de la suite $\left(\overline{f_n}\left(\frac{\pi}{2}\right)\right)_{n\in\mathbb{N}^*}$

Sujet 6:

Soit
$$f(x) = E(x) + \sqrt{x - E(x)}$$

- 1. Montrer que f est définie sur IR
- 2. Montrer rigoureusement que f est continue sur IR

Sujet 7:

Soit
$$f(x) = \frac{2}{3-x}$$
 et $I = [1,2]$

- 1. Montrer que f est strictement croissante sur I
- 2. Déterminer f(I)
- 3. Déterminer les points fixes de f appartenant I

Soit la suite
$$u_{n+1} = \frac{2}{3 - u_n}$$
 pour tout $n \in \mathbb{N}$ et $u_0 = \frac{3}{2}$

- 1. Calculer u_1
- 2. Montrer que: $\forall n \in \mathbb{N}$.
- 3. Montrer que la suite (u_n) est strictement décroissante
- 4. Déduire que la suite (u_n) est convergente et calculer sa limite

Soit
$$v_n = \frac{\sin\left(\frac{\pi}{2}u_n\right)}{1 + \cos^2\left(\frac{\pi}{3}u_n\right)}$$
 pour tout $n \in \mathbb{N}$. Calculer $\lim (v_n)$

Sujet 8:

Soient les fonctions
$$\begin{cases} f(x) = x+1 \\ f(x) = \sin(\sqrt{x}) \end{cases}$$
; $x < 0$ et $g(x) = (1-x)x$

Continuité de f et de g

- 1. Vérifier que f est continue sur $]-\infty,0[$
- 2. Montrer que f est continue sur $[0,+\infty]$
- 3. Montrer que f est discontinue en 0
- 4. Donner le domaine de continuité de *g*

Continuité de gof

Chapitre: Continuité

Br-Rachid http://www.sc-math.e-monsite.com

- 5. Montrer que *gof* est continue sur $]-\infty,0[$
- 6. Montrer que *gof* est continue sur $[0, +\infty]$
- 7. Déterminer *gof* . *gof* est-elle continue en 0 ? Conclusion ? <u>Images d'intervalles</u>
- 8. Déterminer l'image par f de $]-\infty,0[$
- 9. Déterminer l'image par f de $[0,+\infty]$
- 10. Déterminer l'image par gof de $]-\infty,0]$
- 11. Déterminer l'image par gof de $[0,+\infty]$ Une équation subtile :
- 12. Montrer que l'équation $gof(x) = \frac{1}{8}$ admet au moins deux solutions de signes opposés dans IR

Sujet 9:

Soit:
$$f(x) = 4x^3 + 3x^2 - 1$$

- 1. Montrer que l'équation f(x)=0 admet une solution unique c dans [0,1]
- 2. Donner un encadrement de cette solution, d'amplitude moindre que 0.25
- 3. Donner le signe de f sur [0,1]
- 4. Vérifier que c est l'unique solution de f(x)=0 dans \mathbb{R} , puis donner le signe de f sur
- 5. Montrer que f admet un point fixe dans [0,1]

Sujet 10:

Soit $f:[a,b] \to [m,M]$ une fonction continue, avec [m,M]C[a,b]

- 1. Montrer que : $\exists \alpha \in [a,b]$. $f(\alpha)=a$
- 2. Montrer que si f est décroissante, alors le point fixe α est unique

Sujet 11:

1. Soit f continue sur l'intervalle [a,b]. Soit $(x_i)_{0 \le i \le n-1} \in [a,b]^n$ $(n \in \mathbb{N}^*)$

Montrer que :
$$\exists c \in [a,b]$$
. $f(c) = \frac{1}{n} \sum_{k=0}^{k=n-1} f(x_k)$

2. Soit g continue et non constante sur [0,1] avec g(0)=g(1)

Chapitre: Continuité

Br-Rachid http://www.sc-math.e-monsite.com

a) Pour tout $n \in \mathbb{N}^*$, soit g_n la fonction définie sur $\left[0,1-\frac{1}{n}\right]$ par : $g_n(x) = g\left(x+\frac{1}{n}\right) - g\left(x\right)$

- b) Montrer que g n'est pas monotone sur [0,1]
- c) Montrer que : $\forall n \in \mathbb{N}^*$. $\sum_{k=0}^{k=n-1} g_n(\frac{k}{n}) = 0$
- 3. Montrer que : $\forall n \in \mathbb{N}^*$. $\exists c_n \in \left[0, 1 \frac{1}{n}\right]$. $g(c_n) = g(c_n + \frac{1}{n})$
- 4. Application: Soit la fonction h(x)=x(1-x). Expliciter c_n en fonction de n puis calculer $\lim_{n \to \infty} (c_n)$

Sujet 12:

Soit f continue sur IR

- 1. Montrer que tout point fixe de f est aussi un point fixe de f of
- 2. On suppose que fof admet dans \mathbb{R} un point fixe c. On pose d = f(c)
 - a) Montrer que f(d) = c
 - b) Montrer que f admet un point fixe dans l'intervalle $[\min(c,d); \max(c,d)]$

Sujet 13:

Soit $f_n(x) = x^n + x - 1$ définies sur IR avec $n \in \mathbb{N}^*$

- 1. Montrer que : $\forall n \in \mathbb{N}^*$. $\exists ! u_n \in]0,1[$. $f_n(u_n)=0$
- 2. Calculer u_1 et u_2
- 3. Montrer que : $\forall x \in]0,1[$. $f_{n+1}(x) \leq f_n(x)$. Déduire que la suite (u_n) est croissante
- 4. Déduire que la suite (u_n) est convergente
- 5. On pose $\lim |u_n| = l$. Montrer que $0 < l \le 1$ puis montrer, par l'absurde, que $\lim |u_n| = 1$

Sujet 14:

Soit f continue sur IR avec $\lim_{x \to +\infty} f(x) = -2$ et $\lim_{x \to -\infty} f(x) = 1$

On pose: $g(x) = fo \tan(x)$ avec $x \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[$

- 1. Vérifier que g est continue sur $\left]\frac{-\pi}{2}, \frac{\pi}{2}\right[$
- 2. Calculer $\lim_{x \to \frac{\pi}{2}} g(x)$ et $\lim_{x \to -\frac{\pi}{2}} g(x)$
- 3. Montrer que : $\exists c \in IR$. f(c)=0