TD DE MATHÉMATIQUES — 1SM-CYCLE SECONDAIRE QUALIFIANT

DL3: Généralités sur le fonctions - Suites numériques - SI

Br-Rachid www.sc-math.e-monsite.com

Sujet 1: Soit la suite définie par : $u_0 = -1$ et $u_1 = 1$ et $u_{n+2} - u_{n+1} = \frac{-1}{4}u_n$ $(n \in \mathbb{N})$

On considère les suites : $v_n = u_{n+1} - \frac{1}{2}u_n$ et $w_n = 2^n u_n$ pour tout $n \in \mathbb{N}$

- 1. Montrer que (v_n) est géométrique et calculer v_n en fonction de n
- 2. Montrer que (w_n) est arithmétique et calculer w_n en fonction de n
- 3. Calculer u_n en fonction de n
- **4.** On poe $S_n = \sum_{k=0}^{k=n} u_k$ pour tout $n \in \mathbb{N}$
 - a) Montrer que $S_n = \frac{1}{2^n} 2 + 3 \sum_{k=0}^{k=n} \frac{k}{2^k}$ (Utiliser l'expression explicite de u_n)
 - b) Par télescopage, Montrer que $u_{n+2}-u_1=\frac{-1}{4}S_n$ et déduire S_n en fonction de n
 - c) Calculer alors $\sum_{k=0}^{k=n} \frac{k}{2^k}$ en fonction de n

Sujet 2:

Partie 1: On considère la fonction $f(x) = \frac{1}{2} \sqrt{\frac{1}{1+x^2}}$ et l'intervalle $I = \left[0, \frac{1}{2}\right]$

- **1- Montrer que** $\forall x \in \mathbb{R}$. $0 \le f(x) \le \frac{1}{2}$ **. Déduire que** $f(I) \subset I$
- 2- Montrer que $\frac{1}{2}$ est une valeur maximale absolue de f . 0 est-il un extremum f ?
- 3- Ecrire f sous forme d'un composé de trois fonctions usuelles
- 4- Montrer que f et strictement décroissante sur \mathbb{R}^+ . Déduire sa monotonie sur \mathbb{R}^-

Partie 2: On considère la suite (u_n) donnée par : $u_0=0$ et $u_{n+1}=\frac{1}{2}\sqrt{\frac{1}{1+u_n^2}}$ $(n\in\mathbb{N})$

- 1- Calculer u_0 et u_1 et u_2 et u_3 . Déduire que la suite (u_n) n'est pas monotone
- **2- Montrer que :** $\forall n \in \mathbb{N}$. $0 \le u_n \le \frac{1}{2}$
- 3- On pose $w_n = u_{2n}$ et $v_n = u_{2n+1}$ pour tout $n \in \mathbb{N}$
 - a) Montrer que $v_n = f(w_n)$ et $v_{n+1} = fof(v_n)$ et $w_{n+1} = fof(w_n)$ pour tout $n \in \mathbb{N}$
 - b) Montrer que (w_n) est croissante et déduire que (v_n) est décroissante

Sujet 3: Soient $u_0 = 2$ et $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_0 = 1$ et $v_{n+1} = \frac{2u_n v_n}{u_n + v_n}$ pour tout $n \in \mathbb{N}$

- **1. Vérifier que :** $\forall n \in \mathbb{N}$. $u_{n+1} v_{n+1} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$.
- 2. Montrer que : $\forall n \in \mathbb{N}$. $0 < v_n < u_n$
- 3. Montrer que les suites $(u)_n$ et (v_n) sont monotone et déterminer leurs monotonies.
- **4.** a) Montrer que: $\forall n \in \mathbb{N}$ $0 < u_{n+1} v_{n+1} < \frac{1}{2}(u_n v_n)$.
 - **b)** Déduire que : $\forall n \in \mathbb{N}$ $0 < u_n v_n < \left(\frac{1}{2}\right)^n$.
- 5. Montrer que la suite $(u_n v_n)$ est constante.