TD DE MATHÉMATIOUES — 2SM-CYCLE SECONDAIRE OUALIFIANT

Chapitre: Fonction Logarithme

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 1:

- 1. Déterminer le domaine de définition de la fonction : $f(x) = \ln \frac{1-x}{1+y}$
- 2. Résoudre dans \mathbb{R} : $2\ln(2x-3) = 3\ln(2x-3)$ et $1-\ln(x^2) > 0$ et $1-\ln^2(x) > 0$
- 3. Calculer les dérivées des fonctions $g(x) = \ln(\ln(x))$ et $h(x) = arctg(\ln(x))$
- 4. Montrer que : $\forall x > 0$. $\ln(x) \le x 1$
- 5. Calculer: $\lim_{x \to +\infty} \frac{\ln(\sqrt{x})}{x}$ et $\lim_{x \to 0^+} \frac{\ln(\sqrt{x})}{x}$ et $\lim_{x \to 1} \frac{2\ln(x)}{x^2 1}$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x^7}$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x^7}$

Sujet 2:

- 1. Déterminer la forme générale des primitives de : $f(x) = \frac{1}{xI.n(x)}$
- 2. Soit : $g(x) = \frac{\ln(x)}{x}$. Déterminer la primitive G de g sur $]0,+\infty[$ telle que G(1)=-1
- 3. Soient $h(x) = \frac{2x}{x^2 + x + 2}$ et $a(x) = \frac{2x}{x^2 x 2}$ a) Vérifier que : $h(x) = \frac{2x + 1}{x^2 + x + 2} \frac{1}{x^2 + x + 2}$ et $a(x) = \frac{2x 1}{x^2 x 2} + \frac{-1}{3(x + 1)} \frac{1}{3(x 2)}$
 - b) Déterminer la primitive H de h telle que H(2)=0.
 - c) Déterminer le primitive de *a* nulle en 0
- 4. Soit $t(x) = \arctan(x) + \frac{x}{1+x^2}$
 - a) Donner la primitive, qui s'annule en 0, de la fonction $a(x) = \frac{x}{1 + v^2} sur IR$.
 - b) Donner la primitive, qui s'annule en 0, de la fonction t sur IR. (Utiliser la forme u 'v+uv')
 - c) Déduire la primitive, qui s'annule en 0, de la fonction arctan
- 1. Soit $l(x) = \ln(x) + 1$
 - a) Donner la primitive, qui s'annule en 1, de la fonction l sur IR. (Utiliser la forme u'v+uv')
 - b) Déduire la primitive, qui s'annule en 1, de la fonction ln

Sujet 3:

Soit $n \in \mathbb{N}^*$. On considère la fonction $g_n(x) = x - n + \frac{n}{2} \ln(x)$ définie sur $]0, +\infty[$

- 1- Calculer $\lim_{x \to +\infty} g_n(x)$ et $\lim_{x \to 0^+} g_n(x)$
- 2- Calculer $g_n'(x)$ pour tout $x \in [0, +\infty[$ et poser le tableau des variations de g_n
- 3- Montrer que : $\forall n \in \mathbb{N}^*$. $\exists \alpha_n \in [1, e^2] : g_n(\alpha_n) = 0$
- 4- Montrer que $\ln(\alpha_n) = 2 \frac{2}{n} \alpha_n$
- 5- Montrer que la suite (α_n) est strictement croissante
- 6- Déduire que la suite (α_n) est convergente puis calculer $\lim_{n \to \infty} (\ln(\alpha_n))$ et $\lim_{n \to \infty} (\alpha_n)$

TD DE MATHÉMATIQUES — 2SM-CYCLE SECONDAIRE QUALIFIANT

Chapitre: Fonction Logarithme

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 4:

- 1. Résoudre l'équation : $\log_2(2x) + \log_4(x) = 1,5$
- 2. Calculer $\lim_{x \to 2} \frac{\log_2(x) 1}{x 2}$ et $\lim_{x \to +\infty} \frac{\log_{\frac{1}{2}}(x)}{x}$ et $\lim_{x \to 0^+} \frac{\log_{\frac{1}{2}}(x)}{x}$
- 3. Soit $a \ne 1$ un nombre réel strictement positif. Soit $f(x) = \frac{1}{\ln(a)} \frac{\log_a(x)}{x}$

Déterminer la primitive de f sur $|0,+\infty|$ et qui s'annule en a

Sujet 5:

- 1. Montrer que : $\forall t > 0$. $t \frac{t^2}{2} \le \ln(1+t) \le t \frac{t^2}{2} + \frac{t^3}{3}$ et déduire que : $\lim_{t \to 0^+} \frac{\ln(1+t) t}{t^2}$
- 2. Etudier le signe de la fonction u(x) = x 1 xLn(x) définie sur $[0, +\infty]$

Soit
$$f(x) = \frac{\ln(x)}{x-1}$$
 définie sur $]0,1[\cup]1,+\infty[$

- 1. Calculer les limites de f et interpréter les résultats obtenus
- 2. Calculer: $\lim_{x \to 1^+} \frac{f(x) 1}{x 1}$
- 3. Montrer que : $f'(x) = \frac{u(x)}{x(x-1)^2}$. Donner le tableau des variations de f
- 4. Représenter la courbe de f dans un repère orthonormé (O, \hat{i}, \hat{j}) .
- 5. Montrer que g, le prolongement par continuité de f en 1, est bijective sur IR^+ et représenter $C_{q^{-1}}$

Sujet 6:

- 1- La fonction u est définie par : $\forall x > -1$. $u(x) = \frac{x}{1+x} 2\ln(1+x)$
 - Calculer u(0) puis calculer les limites de u en -1 à droite et en $+\infty$
 - Calculer la dérivée de *u* et poser son tableau des variations
 - Vérifier que : $\exists ! c \in \left] -1, \frac{-1}{2} \right[$. u(c) = 0 et déduire le signe de u
- 2- Soit la fonction définie par $f(x) = \frac{\ln(1+x)}{x^2}$
 - 1- Déterminer le domaine D_f de f puis déterminer les branches infinies de C_f
 - 2- Préciser le domaine de dérivabilité de f et montrer que $f'(x) = \frac{u(x)}{x^3}$
- 3- Représenter la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) . (On donne $f(c) \approx -2.5$)

TD DE MATHÉMATIQUES — 2SM-CYCLE SECONDAIRE QUALIFIANT

Chapitre: Fonction Logarithme

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 7:

Soit $n \ge 3$ un entier naturel. On considère la fonction définie sur IR^{+*} par $g_n(x) = nx + 2\ln(x)$

- 1. Poser le tableau des variations de g_n
- 2. Montrer que : $\forall x > 0$. $\sqrt{x} > \ln(x)$
- 3. Montrer que l'équation $g_n(x)=0$ admet une solution unique a_n strictement positive
- 4. Montrer que : $\forall n \ge 3$. $\frac{1}{n} < a_n < \frac{1}{\sqrt{n}}$ et déduire la limite de la suite (a_n)

Sujet 8:

- 1. Montrer que : $\forall x > 0$. $\frac{1}{x+1} < \ln(x+1) Lnx < \frac{1}{x}$
- 2. Soit $u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$ $(n \in \mathbb{N}^*)$
 - a) Montrer que la suite (u_n) est croissante
 - b) Montrer que : $\forall n > 0$. $\ln(2n+1) \ln(n+1) < u_n < \ln(2n) \ln(n)$
 - c) Calculer $\lim_{n \to \infty} (u_n)$

Sujet 9: (BAC 2016 – 6,5 points)

Soit $n \in \mathbb{N}^*$. Soit f_n la fonction numérique définie sur l'intervalle $]0, +\infty[$ par : $f_n(x) = \ln(x) - \frac{n}{x}$ Soit C_n la courbe de f_n dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j})

- 1. a) Etudier les deux branches infinies de C_n
 - b) Etudier les variations de f_n sur l'intervalle $]0,+\infty[$. Poser son tableau des variations. Construire C_2
- 2. Montrer que f_n est bijective de $]0,+\infty[$ vers IR
- 3. a) Montrer que : $\forall n \ge 1$. $\exists ! \alpha_n > 0$. $f_n(\alpha_n) = 0$
 - b) Comparer $f_{n+1}(x)$ et $f_n(x)$ sur $]0,+\infty[$
 - c) Montrer que la suite $(\alpha_n)_{n\geq 1}$ est strictement croissante
- 4. a) Montrer que : $\forall x > 0$. $\ln(x) < x$
 - b) Montrer que $\lim (\alpha_n) = +\infty$
- 5. Soit F_n une primitive de f_n sur $]0,+\infty[$. Pour tout $n \in \mathbb{N}^*$, On pose $I_n = \frac{F_n(\alpha_{n+1}) F_n(\alpha_n)}{\alpha_{n+1} \alpha_n}$
 - a) Montrer que : $\forall n > 0$. $\exists c_n \in [\alpha_n, \alpha_{n+1}]$. $I_n = f_n(c_n)$
 - b) Montrer que : $\forall n > 0$. $0 < I_n < \frac{1}{\alpha_{n+1}}$
 - c) Montrer, par l'absurde, que c_n et unique
 - d) Déterminer $\lim (I_n)$

TD DE MATHÉMATIQUES — 2SM-CYCLE SECONDAIRE QUALIFIANT

Chapitre: Fonction Logarithme

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 10: (BAC 2016 – 3,5 points)

1. Soit $n \in \mathbb{N} - [0,1]$. Vérifier que la fonction $t \to \frac{1}{\ln(t)}$ admet des primitives sur $[n, +\infty[$.

Dans la suite, F désigne une de ces primitives.

Soit g_n la fonction numérique définie sur l'intervalle $[n, +\infty]$ par : $g_n(x) = F(x) - F(n)$

- 2. a) Montrer que g_n est dérivable sur $[n, +\infty]$ et calculer sa dérivée
 - b) Montrer que g_n est strictement croissante sur $[n, +\infty]$
- 3. a) Montrer que : $\forall x \ge n$. $g_n(x) \ge \ln\left(\frac{x-1}{n-1}\right)$ (On pourra utiliser l'inégalité $\ln(x) \le x-1$)
 - b) En déduire que $\lim_{x \to +\infty} g_n(x) = +\infty$
- 4. a) Montre que g_n est bijective de $[n, +\infty[$ vers $[n, +\infty[$
 - b) En déduire que : $\forall n \ge 2$. $\exists ! u_n \ge n$. $g_n(u_n) = 1$
- 5. On considère la suite $(u_n)_{n\geq 2}$ définie dans la question précédente.
 - a) Montrer que : $\forall n \ge 2$. $F(u_{n+1}) F(u_n) = F(n+1) F(n)$
 - b) En déduire que la suite $(u_n)_{n\geq 2}$ est strictement croissante
 - c) Calculer $\lim (u_n)$