Chapitre: Nombres Complexes – Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 1:

- 1. Donner la forme algébrique z=(2-3i)+(2-i)(3i+5) et représenter son image dans le plan complexe
- 2. a) Donner la forme algébrique de i^n $(n \in \mathbb{N})$ suivant les valeurs de l'entier naturel n
 - b) Représenter dans le plan complexe le point d'affixe iⁿ
- 3. Ecrire sous forme algébrique $(1+i)^2$ et $(1-i)^2$ et déduire celle de $(1+i)^8$ et $(1-i)^{16}$
- 4. Calculer la somme $1+i+i^2+\dots+i^n$ et déduire $1+i+i^2+\dots+i^{n-1}$

Sujet 2:

- 1. a) Factoriser dans l'ensemble des nombres complexes : $u^2 v^2$ et $u^2 + v^2$
 - b) Déduire les solutions dans IC de l'équation $z^2 = -5$
- 2. On pose : $j = \frac{-1}{2} + i \frac{\sqrt{3}}{2}$
 - a) Développer $(a+bj)(a+b\bar{j})$ avec $\bar{j} = \frac{-1}{2} i\frac{\sqrt{3}}{2}$
 - b) Déduire la factorisation dans IC de : a^3-b^3 et a^3+b^3

Sujet 3:

Soit z = x + iy un nombre complexe. On pose : $f(z) = z^2 + z + 1$

- 1. Calculer f(i) et f(-1+i) et $f(\frac{-1}{2}+i\frac{\sqrt{3}}{2})$
- 2. a) Déterminer en fonction de x et de y les parties réelles et imaginaires de f(z)
 - b) Résoudre f(z)=0
- 3. a) Ecrire la forme canonique de f(z)
 - b) Déduire, d'une autre méthode, les solutions de l'équation f(z)=0

<u>Sujet 4:</u>

Soit z = x + iy un nombre complexe. On pose $f(z) = z^2 + (2 + 2i)z + 2i$

- 1- Calculer f(-1-i)
- 2- Montrer que : $\forall y \in IR$. $f(-1+iy) \in IR$ et que : $\forall x \in IR$. $f(x-i) \in IR$
- 3- Déterminer $R_e(f(z))$ et $\Im(f(z))$ en fonction de x et y avec z=x+iy
- 4- Soit $E = [M_z \in P]$. Donner une équation cartésienne de E et déterminer la nature géométrique de E
- 5- Soit $F = [M_z \in P]$. $f(z) \in iIR$. Déterminer la nature géométrique de E. Donner une équation cartésienne de E et déterminer la nature géométrique de E
- 6- Déterminer $E \cap F$

Chapitre: Nombres Complexes – Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 5:

Soit F la transformation du plan complexe qui transforme le point M d'affixe z en le point M ' d'affixe z' tel que : z - 2z = z + 1 - i

- 1. a) Déterminer l'image par F du point A_{1+i}
 - b) Montrer que F est une homothétie et préciser l'affixe de son centre Ω et son rapport k
- 2. Soit G l'homothétie de centre H_{2i} et de rapport k=-2. Donner l'expression complexe de G Former l'expression complexe de G H. Déduire sa nature et ses éléments caractéristiques
- 3. t est la translation dont l'affixe de son vecteur directeur est 3-4i
 - a) Donner l'expression complexe de *t*
 - b) Donner les expressions complexes de toH et toH et préciser leurs éléments caractéristiques

Sujet 6:

Soit u=2+3i un nombre complexe. Soit A le point d'affixe a On considère (D) l'ensemble des points M d'affixe z tels que z=ku lorsque k décrit IR

- 4. a) Montrer que $\overrightarrow{OM} = k \overrightarrow{OA}$
 - b) Déterminer et représenter l'ensemble des points (D)
 - c) Déterminer et représenter l'ensemble des points M_z tels que z = ku lorsque k décrit [-1,2]
- 5. On considère (L) l'ensemble des points M_z tels que z=1-2i+ku lorsque k décrit IR
 - a) Montrer que $\overrightarrow{BM} = k \overrightarrow{BA}$ avec B le point d'affixe 1-2i
 - b) Déterminer et représenter l'ensemble des points (D)
- 6. Donner la représentation complexe de la droite (K) passant par le point B_{1+2i} et de direction v=1-i

<u>Sujet 7:</u>

- 1. Résoudre dans \mathbb{C} l'équation $z^2 z + 2 = 0$
- 2. On pose: $P(z)=z^3-(1+3i)z^2+(2+3i)z-6i$
 - a) Montrer que P admet une racine imaginaire pur yi à déterminer
 - b) Calculer les réels a et b et c telles que $z^3 (1+3i)z^2 + (2+3i)z 6i = (z-3i)(az^2 + bz + c)$
 - c) Déduire alors les solutions dans \mathbb{C} , puis dans IR de l'équation P(z) = 0
- 3. Sachant que 2 est solution réelle, résoudre dans \mathbb{C} l'équation $z^3 3z^2 + 4z 4 = 0$

Sujet 8:

- 1. En utilisant les identités remarquables dans C, résoudre l'équation $z^8-1=0$
- 2. On pose: $P(x) = \frac{1}{2i} \left(\left(1 i \frac{x}{8} \right)^8 \left(1 + i \frac{x}{8} \right)^8 \right)$ avec $x \in IR$
 - a) Calculer P(0) et P(8) et P(-8)
 - b) Résoudre dans IR l'équation P(x)=0 (Utiliser question 1)
 - c) Utiliser le binôme de Newton et déterminer les parties réelle et imaginaire de P(x)

Chapitre: Nombres Complexes - Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 9:

On considère l'équation dans l'ensemble des nombres complexes $\bar{z} = |2-3i|z$ (E)

- 1. Montrer que : $z = (2+3i)\overline{z}$
- 2. On pose z=x+iy. Montrer que $x^2+y^2+6xy=0$
- 3. Résoudre (E)

Sujet 10:

Soit $f(z) = \frac{z-1}{z-i}$. Pour tout z différent de i. On pose z = x+iy

- 1. a) Calculer f(2-i). Déduire que les points A_1 et B_i et C_{2-i} sont alignés
 - b) Déterminer l'affixe du point D pour que ABCD soit un parallélogramme
- 2. a) Montrer que : $\forall z \neq i$. $f(z) \neq 1$
 - b) Montrer que f est bijective de C-[i] vers C-[1] et déterminer sa réciproque
- 3. Déterminer l'ensemble des points M_z pour que f(z) soit réel, imaginaire pur ? f(z)f(z)=1 ?

Sujet 11:

Soit
$$f(z) = \frac{z}{1 + \cos\theta} + \frac{2}{z}$$
 avec $z \in \mathbb{C}^*$ et $-\pi < \theta < \pi$

- 1. Donner la forme algébrique de f(1-i) puis calculer θ pour que f(1-i) soit réel
- 2. a) Montrer que : $\overline{f(z)} = f(z) \iff (z = \overline{z}) \quad \text{ou} \quad z \times \overline{z} = 4\cos^2\frac{\theta}{2}$
 - b) Montrer que : $f(z) \in iIR \iff z \in iIR$
- 3. Déterminer le lieu géométrique des points M_z pour que f(z) soit réel, imaginaire pur ?

Sujet 12:

- 1. Soit $P(z) = \sum_{k=0}^{k=n} a_k z^k$ avec $z \in \mathbb{C}$ et $a_k \in IR$ pour tous $0 \le k \le n$
 - a) Montrer que : $P(z)=0 \Leftrightarrow P(\overline{z})=0$
 - b) Montrer que si n = 1[2] alors $(\exists x \in IR. P(x) = 0)$
- 2. Soit $Q(z)=5z^3-2z^2-2z+5$. Soit S l'ensemble des solutions de Q(z)=0 dans \mathbb{C}
 - a) Calculer Q(-1)
 - b) Montrer que si u est racine de Q alors $u \neq 0$ et $\frac{1}{u}$ est racine de Q. Résoudre alors Q(z) = 0
- 3. Soit $R(z)=2z^4-5z^3+4z^2-5z+2$
 - a) Calculer R(2) et R(i)
 - b) Montrer que si v est racine de R alors $v \ne 0$ et $\frac{1}{v}$ l'est aussi. Résoudre alors R(z) = 0

Chapitre: Nombres Complexes - Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 13:

- 1. Déterminer l'ensemble des points M d'affixe z telles que |z-2-i|=1
- 2. Déterminer l'ensemble des points M d'affixe z telles que |z-2-i|=|z+i|
- 3. Montrer que le triangle ABC tel que $z_A=3+i$ et $z_B=i$ et $z_C=\frac{3}{2}+7i$ est isocèle

Sujet 14:

- 1- Soit z un nombre complexes différent de -i. Montrer que : $\Im(z) > 0 \Longrightarrow \left| \frac{z-i}{z+i} \right| < 1$
- 2- Soient trois nombres complexes tels que : |a|=1 et |b|=1 et |c|=1Montrer que : $\left| \frac{a-b}{1-a\overline{b}} \right| = 1$ et que : $\left| ab+bc+ac \right| = \left| a+b+c \right|$
- 3- Déterminer les nombres complexes v pour lesquels v et (1-v) et 1/v ont le même module
- 3- Déterminer les nombres complexes : $|s|=1 \Leftrightarrow \frac{1+s}{1-s} \in iIR$

Sujet 15:

Soit
$$f(z) = \frac{iz+2}{z-i}$$
 définie sur $D = \mathbb{C} - [i]$

- 1. a) Déterminer les nombres complexes fixes par f et résoudre dans D les équations f(z)=iz et
 - b) Montrer que $f(z) \neq i$ pour tout nombre complexe z
 - c) Montrer que f est bijective de D vers D et déterminer sa réciproque
- 2. a) Déterminer l'ensemble des points du plan complexe M_z pour que f(z) soit réel
 - b) Déterminer l'ensemble des points du plan complexe M_z pour que f(z) soit imaginaire pur
 - c) Déterminer l'ensemble des points du plan complexe M_z pour que |f(z)|=1
- 3. Soient H_i et r un nombre réel strictement positif
 - a) Montrer que : $\forall z \in D$. $|z-i|=r \Leftrightarrow |f(z)-i|=\frac{1}{r}$
 - b) F est l'application qui associe M_z au point $M_{f(z)}$. Déterminer l'image par F du cercle $C_{(H,r)}$

Sujet 16:

- 1. Soit l'équation (E): $z^2=1+i$.
 - Soft requation (2). 2 = 1.

 a) On pose z = x + iy. Montrer alors que: (S) $\begin{cases} x^2 y^2 = 1 \\ xy = \frac{1}{2} \\ x^2 + y^2 = \sqrt{2} \end{cases}$ puis résoudre le système (S) dans IR^2
 - b) En déduire les racines carrées de 1+i
- 2. Résoudre dans \mathbb{C} les équations $z^2 z \frac{1}{4}i = 0$ et $z^2 2iz + i = 0$ et $iz^2 (1-i)z 3i = 0$
- 3. Déterminer deux nombres complexes de somme 1-3i et de produit 2+5i

Chapitre: Nombres Complexes – Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 17:

Soit
$$u = \frac{(\sqrt{3} - i)(1 + i)}{\sqrt{2}(1 - \sqrt{3}i)^5}$$
 et $w = \frac{1 + i\sqrt{3}}{1 - i}$

- 1. Ecrire w sous ses formes algébrique et géométrique, et déduire $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$
- 2. Calculer le module de *u*
- 3. Montrer que $arg(u) = \frac{-\pi}{4} [2\pi]$ et déduire la forme trigonométrique de u
- 4. Ecrire *u* sous forme algébrique

Sujet 18:

Soit
$$v = \cos(x) + i\sin(x)$$

- 1. Développer v^3
- 2. Déduire les transformations de $\cos(3x)$ en fonction de $\cos(x)$, et de $\sin(3x)$ en fonction de $\sin(x)$
- 3. Soit z un nombre complexe de module 1. Montrer que $(z+\overline{z})^2-(z-\overline{z})^2=4$. Quel théorème reconnaissezvous par ce résultat ?

Sujet 19:

Soit
$$z_n = \left(\frac{1}{4} + i\frac{\sqrt{3}}{4}\right)^n - \left(\frac{1}{4} - i\frac{\sqrt{3}}{4}\right)^n$$
 avec $n \in \mathbb{N}^*$

- 1. a) Montrer que Z_n est imaginaire pur
 - b) Calculer le module et l'argument principal de $\frac{1}{4} + i \frac{\sqrt{3}}{4}$ puis déduire ceux de $\frac{1}{4} i \frac{\sqrt{3}}{4}$
 - c) Déduire que $z_n = \frac{i}{2^{n-1}} \sin \frac{n\pi}{3}$ et calculer la limite de la suite $(|z_n|)$
- 2. Par la formule de Newton, Former la partie imaginaire de $\left(\frac{1}{4} + i\frac{\sqrt{3}}{4}\right)^n$ et conclure

Sujet 20:

- 1- Déterminer l'argument principal de $\sqrt{3}+i$. Déduire la forme trigonométrique de $\sqrt{3}+i$
- 2- Déterminer les parties réelles et imaginaires $de(\sqrt{3}+i)^n \ (n \in \mathbb{N})$
- 3- Déterminer l'ensemble $E = [n \in \mathbb{N}, (\sqrt{3} + i)^n \in IR]$

Sujet 21:

- 1. Résoudre l'équation dans \mathbb{C} : $z^5=1$ (E)
- 2. a) Vérifier que : $z^5-1=(z-1)(z^4+z^3+z^2+z+1)$
 - b) Calculer s et r tels que : $z^4+z^3+z^2+z+1=(z^2+sz+1)(z^2+rz+1)$
 - c) Résoudre les équations $z^2+sz+1=0$ et $z^2+rz+1=0$
 - d) Déduire les valeurs de $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{4\pi}{5}\right)$

Chapitre: Nombres Complexes – Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 22:

Soient A et B et C les points d'affixes respectifs a=1+i et b=1 et c=2+i.

- a) Calculer sous formes algébrique et trigonométrique $\frac{c-a}{b-a}$
- b) Déduire une mesure de l'angle $(\overline{AB}, \overline{AC})$
- c) Quel est la nature du triangle ABC?

Sujet 23:

Soient a=1-i et b=1+3i et c=3+i et d=-1+i

- a) Calculer sous forme algébrique $\frac{b-c}{a-c} \cdot \frac{b-d}{a-d}$ b) Montrer que les points $\frac{a}{a} \cdot \frac{b}{a} = \frac{b}{a}$
- b) Montrer que les points A et B et C et D d'affixes respectifs a et b et c et d sont cocycliques
- d) Déterminer le rayon et l'affixe du centre du cercle circonscrit au points A et B et C et D
- e) Montrer que [AB] est bissectrice de l'angle $(\widehat{\overline{AC}}, \widehat{\overline{AD}})$

Sujet 24:

- 1- a) Montrer que u=3+4i est solution de l'équation $z^2-5(2+i)z+17+31i=0$
 - b) Déterminer *v* l'autre solution de cette équation
- 2- Donner les formes algébriques et trigonométrique de $\frac{u}{v}$
- 3- a) Ecrire u sous forme d'un carré puis déterminer les arguments principaux de 2+i et 7+i
 - b) Déduire que $2 Arctg \frac{1}{2} Arctg \frac{1}{7} = \frac{\pi}{4}$

Sujet 25:

- 1. Calculer $(1-3i\sqrt{3})^2$ puis dans résoudre dans C l'équation $(E): z^2 (9+i\sqrt{3})z + 26+6i\sqrt{3}$
- 2. Le plan complexe est rapporté à un repère orthonormé directe (O, i, j).

Soit A le point d'affixe $a=5-i\sqrt{3}$. Le point B est tel que OAB est équilatéral et $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{3}[2\pi]$

- a) Montrer que l'affixe de B est $b=4+2i\sqrt{3}$
- b) Déterminer l'affixe u du milieu I de [OB], puis k celui de K avec ABIK est un parallélogramme
- c) Montrer que $\frac{k-a}{k}$ est imaginaire pur et déduire la nature du triangle OAK
- d) Soit C le point d'affixe $c = \frac{2a}{3}$. Montrer que B et C et K sont alignés

Sujet 26:

- 1. Représenter dans le plan les points A et B et C et D d'affixes a=1 et b=i et c=3+i et d=1+3i
- 2. Montrer que (AB) et (CD) sont parallèles
- 3. Montrer qu'il existe une homothétie h qui envoie A en C et B en D. Préciser le rapport et le centre
- 4. Montrer qu'il existe une rotation r qui envoie A en C et D en B. Préciser son angle et son centre R
- 5. Déduire que les points A et B et C et D sont cocycliques et vérifier ce résultat par une autre méthode

Chapitre: Nombres Complexes – Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 27:

- 1. Soit l'équation (E): $(z+i)^n (z-i)^n = 0$
- 2. a) Vérifier que i n'est pas solution de (E)
 - b) Montrer que |z+i|=|z-i|. En déduire que toutes les solutions de (E) sont des nombres réels
 - c) Déterminer, sous forme algébrique, et en fonction de n les solutions de (E)
- 3. On considère dans l'ensemble des nombres complexes l'équation : $(E):(z^2+1)^n-(z-i)^{2n}=0$
 - a) Vérifier que i est solution de (E) et montrer que toute solution de (E), autre que i, est réel
 - b) On suppose désormais que $z \neq i$. Montrer que $\frac{z+i}{z-1} = e^{i\frac{2k\pi}{n}}$ avec $0 < k \le (n-1)$
 - c) Résoudre l'équation (E) (Ecrire les solutions sous forme algébrique)

Sujet 28:

- 1. Soient $z_k = e^{i\frac{2k\pi}{n}}$ avec $0 \le k \le n-1$ les racines n^{ieme} de 1. Calculer $\sum_{k=0}^{k=n-1} z_k$ et $\prod_{k=0}^{k=n-1} z_k$ 2. On pose : $u_n = \sum_{k=0}^{k=n-1} \cos(kx)$ et $v_n = \sum_{k=0}^{k=n-1} \sin(kx)$ $(x \ne 2k\pi)$
- 3. Calculer $u_n + i v_n$ en fonction de x et n. Déduire u_n et v_n en fonction de n et x
- 4. Soit: $A_n = C_n^0 + C_n^1 \cos x + ... + C_n^n \cos (nx)$ et $B_n = C_n^1 \sin x + ... + C_n^n \sin (nx)$. Calculer A_n et B_n en fonction de n et x

Sujet 29:

- 1. Déterminer les racines carrées de $Z=\sqrt{3}+i$ sous forme algébrique, puis sous forme trigonométrique. En déduire la valeur de $\cos(\frac{\pi}{12})$
- 2. Déterminer les racines cinquièmes de $u = \frac{(1+i\sqrt{3})^4}{(1-i)^3}$
- 3. Résoudre dans \mathbb{C} : $\left(\frac{z+1}{z-1}\right)^3 + \left(\frac{z-1}{z+1}\right)^3 = 0$

Sujet 30:

h et r sont l'homothétie de centre O et de rapport $\frac{\sqrt{3}}{2}$ et la rotation de centre O et d'angle $\frac{\pi}{6}$

- 1. a) Donner les expressions complexes de h et de r
 - b) Calculer z' en fonction de z sachant que N_z , est l'image de M_z par hoR
- 2. On pose A_{z_0} avec $z_0=6$ et pour tout $n \in \mathbb{N}$. $A_{z_{n+1}}=hoR(A_{z_n})$ a) Calculer z_{n+1} en fonction de n et représenter A_{z_0} et A_{z_1} et A_{z_2} dans le plan complexe
 - b) Montrer que $A_{12} \in (Ox)$
 - c) Calculer toutes les valeurs de n pour lesquelles $A_z \in (Ox)$
- 3. Montrer que le triangle OA_zA_{z} est rectangle
- 4. Calculer la longueur de la ligne polygonale $A_{z_0}A_{z_1}A_{z_2}....A_{z_n}A_{z_n}$

Chapitre: Nombres Complexes - Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 31:

- 1. On pose $j = e^{i\frac{2\pi}{3}}$. Montrer que $1 + j + j^2 = 0$ et $-j^2 = e^{i\frac{\pi}{3}}$
- 2. Soient M et N et L les points d'affixes respectifs 1 et j et j^2 . Montrer que MNL est équilatéral
- 3. Soient a et b et c les affixes des points A et B et C. Montrer que ABC est équilatéral si et seulement si $a+bj+cj^2=0$
- 4. Montrer que le triangle de sommets M_{z_1} et N_{z_2} et K_{z_3} l'est équilatéral si et seulement si $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_1 z_3 + z_2 z_3$

Sujet 32:

- 1. Soit $(a,b,c,d\alpha) \in \mathbb{R}^5$
 - a) Représenter les points d'affixes $2e^{i\alpha}$ et $-3e^{i\alpha}$ et $e^{i\alpha}$ et $e^{i\alpha}$ et $e^{i\alpha}$ sachant que $\alpha = \frac{\pi}{4}$
 - b) Montrer que les points d'affixes $ae^{i\alpha}$ et $be^{i\alpha}$ et $ce^{i\alpha}$ et $de^{i\alpha}$ sont toujours alignés
- 2. Soit u un nombre complexe de module 1 . Soient $(z_k)_{1 \le k \le n}$ ses racines n^{iemes}. Montrer que les points d'affixes $(1+z_k)^n$ sont tous alignés

Sujet 33:

En utilisant les formules d'Euler, montrer les formules de transformation suivantes :

- 2. $\forall x \in IR. \forall y \in IR. \cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$
- 3. $\forall x \in IR. \forall y \in IR. \sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$

Sujet 34:

Soit
$$f(x) = \cos^4(x)\sin^4(x)$$

- 1. Linéariser f(x)
- 2. Déterminer la primitive de f qui prend la valeur 1 en 0

Sujet 35:

Dans le plan complexe, soient A_i et B_{-i} et C_1 et D_{-1} quatre points

- 1. Montrer que les points A et B et C et D sont cocycliques.
- 2. Montrer qu'il existe un point N de l'axe réel tel que : $(\overline{NA}, \overline{NB}) \equiv \frac{\pi}{4} [\pi]$
- 3. Soit M avec $(\overline{MA}, \overline{MB}) \equiv \frac{\pi}{4} [\pi]$. Montrer que M appartient à un cercle à déterminer

Chapitre: Nombres Complexes – Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 36:

Le plan complexe est rapporté à un repère orthonormé directe d'origine O. m est un nombre complexe différent de i et de -i

- 1. Résoudre dans \mathbb{C} l'équation $(E): z^2 + (1+i)(1+m)z = -im^2 i$
- 2. Soient u=m+i et v=1+mi. Soient A et B et M les points d'affixes respectives u et v et m.
 - a) Montrer que $\frac{v}{u}$ est réel si et seulement si le module de m est égale à 1
 - b) Déterminer l'ensemble des points M pour que O et A et B soient alignés
- 3. On suppose que |m|=1 et $arg(m) \equiv \theta[2\pi]$ avec $\theta \in \left]\frac{\pi}{2}, \pi\right[$. Ecrire u et v sous forme exponentielle
- 4. Montrer que : $\frac{u^2}{m} \in i \ IR^*$ et qu'il existe un unique nombre complexe $\alpha \neq m$ qui vérifie $\frac{u^2 \alpha}{m \alpha} = i$
- 5. Soit r la rotation de centre Ω et d'angle $\frac{\pi}{2}$. Montrer que R(M) = C
- 6. Soient les points Ω et C d'affixes respectifs α et u^2 . Montrer que O et C et M et Ω sont cocycliques
- 7. Déterminer en fonction de m le centre et le rayon du cercle (C) circonscrit à C et C

Sujet 37: (Bac 2017 ordinaire)

On considère dans C l'équation (E): $2z^2-2(m+1+i)z+m^2+(1+i)m+i=0$ avec $m \in \mathbb{C}^*$

- 1. Vérifier que le discriminant de (E) est $\Delta = -4m^2$ puis résoudre dans $\mathbb C$ l'équation (E)
- 2. Le plan complexe est rapporté au repère orthonormé directe $(O, \vec{e_1}, \vec{e_2})$. On suppose que $m \notin [0,1,i]$ On

pose
$$z_1 = \frac{1+i}{2}(m+1)$$
 et $z_2 = \frac{1-i}{2}(m+i)$. Soient les points A_1 et B_i et M_m et $(M_1)_{z_1}$ et $(M_2)_{z_2}$

- a) Vérifier que $z_1 = i z_2 + 1$
- b) Montrer que M_1 est l'image de M_2 par la rotation de centre $\Omega_{\frac{1+i}{2}}$ et d'angle $\frac{\pi}{2}$ (Notation $\omega = \frac{1+i}{2}$)
- 3. a) Vérifier que $\frac{z_2 m}{z_1 m} = i \frac{m 1}{m i}$
 - b) Montrer que si M et M_1 et M_2 sont alignés, alors M appartient au cercle de diamètre [AB]
 - c) Déterminer les points M pour que Ω et M et M_1 et M_2 soit cocycliques (Rem : $\frac{z_1 \omega}{z_2 \omega} = i$)

Chapitre: Nombres Complexes - Ensemble IC

Br-Rachid http://www.sc-math.e-monsite.com

Sujet 38: (Bac-Maroc Ses 2016 Ordinaire)

Le plan complexe est rapporté au repère orthonormé directe (O, \vec{u}, \vec{v}) .

On considère les points M_1 et M_2 tels que O et M_1 et M_2 sont distincts deux à deux et non alignés

Soient z_1 et z_2 les affixes respectifs des points M_1 et M_2 . Soit M le point d'affixe z tel que $z = \frac{2z_1z_2}{z_1+z_2}$

- 1. Montrer que : $\frac{z_1-z}{z_2-z} \times \frac{z_2}{z_1} = -1$. Déduire que M appartient au cercle circonscrit au triangle OM_1M_2
- 2. Montrer que si $z_2 = \overline{z_1}$ alors M appartient à l'axe des réels
- 3. On suppose que M_2 est l'image de M_1 par la rotation de centre O et d'angle α avec $\alpha \in]0$, $\pi[$
 - a) Calculer z_2 en fonction de z_1 et de α .
 - b) Montrer que M appartient à la médiatrice de $[M_1M_2]$.
- 4. Soit $\theta \in]0, \pi[$. On suppose que z_1 et z_2 sont les deux solutions de $6t^2 (e^{i\theta} + 1)t + (e^{i\theta} 1) = 0$ Sans calculer z_1 et z_2 , vérifier que $z = 2\frac{e^{i\theta} - 1}{e^{i\theta} + 1}$ et donner la forme trigonométrique de z

Sujet 39: (Bac-Maroc Ses 2014 Rattrapage)

- 1. Résoudre dans C l'équation (E): $z^2+i=0$ (On note a la solution ayant la partie réelle positive)
- 2. a) Calculer le module et un argument de 1+a et déduire que $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$
 - b) Vérifier que (1-a)(1+a)=1+i puis déduire la forme trigonométrique de 1-a
- 3. Dans le plan complexe rapporté à un R.O.N.D, on considère les points A et B et M et M ' et N d'affixes respectifs a et -a et z et \overline{z} avec zz '+i=0
 - a) Montrer que (OM') et (ON) sont perpendiculaires
 - b) a) Montrer que $z'-a=i\frac{z-a}{az}$
 - c) Montrer que si $z \ne -a$ et $z \ne -a$ alors $\frac{z'-a}{z'+a} = -\frac{z-a}{z+a}$
 - d) On suppose A et B et M non alignés. Montrer que M 'appartient au cercle circonscrit à ABM

Sujet 40:

On considère dans \mathbb{C} l'équation (E): $(1+iz)^5 = (1-iz)^5$

- 1. Montrer que toute solution de (E) est réelle et déduire que : $\exists ! \theta \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[.$ $z = \tan(\theta)$
- 2. Montrer que (E) est équivalente à $e^{i(10\theta)}=1$ puis résoudre (E)
- 3. Résoudre (E) en utilisant les racines cinquièmes de l'unité

Sujet 41:

On considère l'application de \mathbb{C} dans \mathbb{C} définie par : $f(z) = \frac{3+i\sqrt{3}}{4}z + \frac{1-i\sqrt{3}}{2}$

- 1. Résoudre dans C l'équation f(z)=z
- 2. Ecrire f sous forme d'un composé d'une homothétie h et d'une rotation r à déterminer